Артикул: p6422341
Характеристики
- Год издания:2019
- Жанр: Пользование программами
- ISBN:978-5-97-060673-5
- Формат: 170x241 мм
- Общий тираж: 200
- Вес: 829 г
Описание
Машинное обучение - один из самых быстро развивающихся разделов информатики, с приложениями в самых разных областях. Цель этой книги - познакомить читателя с фундаментальными принципами машинного обучения и характерными для него алгоритмическими парадигмами. Книга содержит обширный свод основополагающих теоретических идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический градиентный спуск, нейронные сети и обучение структурированному выводу, а также совсем недавние теоретические концепции, например, PAC-байесовский подход и границы сжатия. .Книга задумывалась как повышенный курс для студентов средних и старших курсов, фундаментальные основы и алгоритмы машинного обучения излагаются в форме, доступной студентам и читателям, не являющимся специалистами в области математической статистики, информатики, математики и технических дисциплин. .Важнейшие алгоритмы машинного обучения .Когда необходимо машинное обучение .Вычислительная сложность обучения .Обучение нейронных сетей .Оценка максимального правдоподобия .Инструмент для извлечения информации из больших наборов данных